Fie \mathcal X un spaţiu vectorial peste corpul \mathcal K (\mathcal \Gamma sau \mathbb C). Se numeşte normă pe \mathcal X orice aplicaţie \| \|: \mathcal X \rightarrow \mathbb R cu proprietăţile:

  • \|x \| \ge 0, \; \forall x \in \mathcal X şi \| x\|=0 dacă şi numai dacă x= 0_{\mathcal X}.
  •  \|\lambda x \| = |\lambda | \cdot \|x\| , \; \forall x \in \mathcal X.
  • \|x+y\| \le \|x\| + \|y\|, \; \forall x, y \in \mathcal X.

Perechea (\mathcal X, \| \|) se numeşte spaţiu normat.

Sursa Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on FANDOM

Random Wiki